L-carnitine affects osteoblast differentiation in NIH3T3 fibroblasts by the IGF-1/PI3K/Akt signalling pathway.

نویسندگان

  • Pinglan Ge
  • Yazhou Cui
  • Fang Liu
  • Jing Luan
  • Xiaoyan Zhou
  • Jinxiang Han
چکیده

Fibroblasts in soft tissues are one of the progenitors of ectopic calcification. Our previous experiment found that the serum concentrations of small metabolite L-carnitine (LC) decreased in an ectopic calcification animal model, indicating LC is a potential calcification or mineralization inhibitor. In this study, we investigated the effect of LC on NIH3T3 fibroblast osteoblast differentiation, and explored its possible molecular mechanisms. Two concentrations of LC (10 μM and 100 μM) were added in Pi-induced NIH3T3 fibroblasts, cell proliferation was compared by MTT assays, osteoblast differentiation was evaluated by ALP activity, mineralized nodules formation, calcium deposition, and expressions of the osteogenic marker genes. Our results indicated that 10 μM LC increased the proliferation of NIH3T3 cells, but 100 μM LC slightly inhibited cell proliferation. 100 μM LC inhibits NIH3T3 differentiation as evidenced by decreases in ALP activity, mineralized nodule formation, calcium deposition, and down-regulation of the osteogenic marker genes ALP, Runx2 and OCN, meanwhile 10 μM of LC exerts an opposite effect that promotes NIH3T3 osteogenesis. Mechanistically, 100 μM LC significantly inhibits IGF-1/PI3K/Akt signalling, while 10 μM LC slightly activates this pathway. Our study suggests that a decease in LC level might contribute to the development of ectopic calcification in fibroblasts by affecting IGF-1/PI3K/Akt, and addition of LC may benefit patients with ectopic calcification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway and down regulates the E3 ligase MuRF1 in skeletal muscle of rats

BACKGROUND Recently, it has been shown that carnitine down-regulates genes involved in the ubiquitin-proteasome system (UPS) in muscle of pigs and rats. The mechanisms underlying this observation are yet unknown. Based on the previous finding that carnitine increases plasma IGF-1 concentration, we investigated the hypothesis that carnitine down-regulates genes of the UPS by modulation of the of...

متن کامل

Inhibition of insulin-like growth factor-1 (IGF-1) expression by prolonged transforming growth factor-β1 (TGF-β1) administration suppresses osteoblast differentiation.

TGF-β1 can regulate osteoblast differentiation not only positively but also negatively. However, the mechanisms of negative regulation are not well understood. We previously established the reproducible model for studying the suppression of osteoblast differentiation by repeated or high dose treatment with TGF-β1, although single low dose TGF-β1 strongly induced osteoblast differentiation. The ...

متن کامل

Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway

Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...

متن کامل

Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling

Runx2 and phosphatidylinositol 3-kinase (PI3K)-Akt signaling play important roles in osteoblast and chondrocyte differentiation. We investigated the relationship between Runx2 and PI3K-Akt signaling. Forced expression of Runx2 enhanced osteoblastic differentiation of C3H10T1/2 and MC3T3-E1 cells and enhanced chondrogenic differentiation of ATDC5 cells, whereas these effects were blocked by trea...

متن کامل

N-Cadherin Negatively Regulates Osteoblast Proliferation and Survival by Antagonizing Wnt, ERK and PI3K/Akt Signalling

BACKGROUND Osteoblasts are bone forming cells that play an essential role in osteogenesis. The elucidation of the mechanisms that control osteoblast number is of major interest for the treatment of skeletal disorders characterized by abnormal bone formation. Canonical Wnt signalling plays an important role in the control of osteoblast proliferation, differentiation and survival. Recent studies ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience trends

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2015